INICIO de editorial.dca.ulpgc.es

Departamento de Construcción | Escuela de Arquitectura
Universidad de Las Palmas de Gran Canaria  |  Redacción

www.ulpgc.es www.cda.ulpgc.es

Colecciones

Mapa S

  Boletín dCA

Descargas


Inicio Servicios Técnicos

 S220  Cálculo de la red.

S2

Fontanería
S22 Rama Cálculo de la red.
S221 Rama Teorema de Bernoulli. Aplicación.
S222 Rama Cálculo de pérdidas de carga.
S223 Rama Cálculo de redes.
S224 Rama Tablas.
S225 Rama Anexo.

EXPOSICIÓN:

En cálculo de la red, se desarrollan los siguientes apartados:


FONTANERÍA

II.  CONCEPTOS FÍSICOS BÁSICOS. CORRECCIÓN PARA CONDICIONES REALES. PÉRDIDAS DE CARGA Y APLICACIÓN EN EL CÁLCULO DE REDES.

___________________________________________________________________

1       TEOREMA DE BERNOULLI.

  -  Enunciado:

En el seno de un líquido perfecto en movimiento ocurre para cualquiera de sus partículas que la altura piezométrica más la altura cinética más la altura geométrica - y que se denomina Carga Total (Ht) - es constante. (fig. 1)

                     


            
FIG.1

2       EJEMPLOS DE APLICACIÓN DEL TEOREMA DE BERNOULLI.

2.1    Velocidad y caudal de salida de un líquido por un orificio.

  Sea un gran recipiente de paredes muy delgadas. (fig. 2)

FIG.2

Tomemos el plano de referencia pasando por el centro del orificio de salida.

En el punto 1, suficientemente alejado para que se le pueda considerar en reposo, podemos escribir:

  Ht = 0 + h + 0

El punto 2 - por la delgadez de las paredes del depósito - carece de altura piezométrica; luego

                                                                                    

 Igualando ambas expresiones

                                                                        

que es la velocidad de salida de un líquido en un depósito de paredes delgadas.

El caudal de salida será:

                                                                  Q = S.v =  S x

2.2    Coeficiente de contracción de una vena líquida.

Si en el orificio anterior aplicamos un corto conducto horizontal se producirán contra sus paredes presiones, o, lo que es lo mismo, altura piezométrica, por lo que, según el T. de Bernoulli, la altura cinética tendrá que disminuir:

                                                                    

  Como    v =          v´=  j ,   siendo       j < 1

 La aplicación de un conducto al orificio representa lo mismo que considerar el grueso de las paredes del depósito (fig. 3).

 FIG. 3

A j  se le denomina coeficiente de contracción de la vena a la salida de un depósito y depende fundamentalmente del grueso de las paredes.  En saneamiento vimos que en un lavabo normal se tomaba un valor de j » 0,6.

2.3    Cálculo de alturas piezométricas y cinéticas de una vena líquida.

Sea la fig. 6 que representa un conducto conectado a un depósito. Calculemos las hp y hc de los puntos A, B y C, prescindiendo de los efectos del rozamiento.

  Sección en A =  9 cm2

   Sección en B = 27 cm2 

   Sección en C = 6,1 cm2  

  FIG.4

Calculemos primero el caudal que sale por C:

Considerando el punto D en reposo y el punto C sin altura piezométrica e igualando las alturas totales de ambos puntos podemos escribir:

                                                                                

  de dónde V = 667 cm/seg, con lo que:

                                                              Q = 6.1 x 667 =  4068.7 cm3/seg.

Teniendo en cuenta la constancia del caudal hallaremos también las velocidades en los puntos A y B y obtendremos así las hc de todos los puntos.  Las alturas piezométricas se obtendrán por diferencias:

                                      { hp =  56,8 cm          

            PUNTO A           { hc = 104,2 " 

                                     { hg =   89,0 "

                                      Ht =  250 cm                           

                                    { hp = 174,6 cm         

            PUNTO B          { hc =  11,4 " 

                                    { hg =  64,0 "

                                      Ht = 250 cm

                                   { hp =   0   cm

            PUNTO C        { hc =  227   " 

                                  { hg =   23   "

                                     Ht =  250 cm

Representando gráficamente la solución tendremos (fig. 5)


 
FIG.5

A la línea P Q C  se la denomina línea piezométrica.

3       APLICACIÓN EN LA PRÁCTICA DEL TEOREMA DE BERNOULLI Y DEL CONCEPTOS DE RESISTENCIAS.

Sea el tramo de instalación representado en la fig. 6

 

R = pérdida de rozamiento en el tramo 0-1      

R= pérdida de rozamiento

      en el tramo 0-1.

  DR= pérdida puntual      

 

  FIG.6

 Debido tanto al rozamiento continuo como a la pérdida puntual.

                                        

En los problemas de fontanería salvo grandes velocidades - que no se dan en la fontanería edificatoria - los términos V2 /2g son irrelevantes frente a Z y a  p / ,  por lo que, suponiendo la existencia de más de un tramo y resistencia, podemos escribir en la práctica:

                               

  Y en el caso del agua  (  = 1)

                              Z0 +  p0 =  Z1 + p1 + (R +  R)     [1]

Fórmula que podemos ya aplicar, por ejemplo, a problemas concretos de suministro.

Llegado a este punto es fundamental hacer notar lo siguiente:

Si bien a la salida de los grifos no hay altura piezométrica al no existir conducto - tal como vimos en el punto 2 - la presión correspondiente, p1, convertida súbitamente en energía nos da el parámetro de adecuación o confort del correspon­diente aparato sanitario.  Por ello veremos cómo, una vez establecidos los correspondientes caudales, los cálculos de fontanería suelen basarse en la exigencia de un mínimo de altura piezométrica remanente - o su equivalente en presión - en el grifo más desfavorable.

3.1.  Resistencias.

Los conductos oponen resistencias al fluido circulante debido al rozamiento.  En ocasiones se originan turbulencias con rozamientos adicionales entre sus propias moléculas.  Otras veces estos rozamientos y turbulencias se acentúan con motivo de un obstáculo...

A todas estas circunstancias se las denomina genéricamente resistencias; unas afectan a la altura piezométrica y otras a la cinética; unas tienen carácter uniforme y otras son puntuales, pero todas ellas, que tienen su origen en el movimiento del fluido, traen como resultado una pérdida de la altura total inicial Ht, proporcional a la velocidad del mismo.

Analicemos el comportamiento de las presiones de la vena líquida en los casos más representativos.

3.2.  Pérdida de carga en sección constante.

Sea un conducto unido a la base de un depósito elevado (fig. 7).

Por la permanencia del caudal circulante, a sección constante del conducto la velocidad del líquido es constante y, por tanto, también lo será la resistencia al movimiento de la vena.

Lo anterior se traduce en una pérdida paulatina y uniforme de la altura piezométrica, que concluye bruscamente en la boca del grifo.

FIG.7  

En la figura:

-           Carga total Ht = altura geométrica (OA)

-           En punto C.-  Carga total = altura geométrica (OC) + altura piezométrica (CE) + altura cinética (EF).

             En punto D.-  Carga total = altura geométrica (OD) + altura cinética    (DM).

3.3.  Pérdida de carga por cambio de sección.

 

En el tramo BC disminuye la velocidad y, por tanto, la altura cinética; consecuentemente con el teorema, la altura piezométrica experimentará en B un crecimiento a pesar de la perdida puntual en dicho punto.  No obstante, salvo que la zona de mayor sección tenga cierta longitud, la pérdida de carga es mayor que si no hubiera ensanchamiento debido a la pérdida puntual en C.

 

FIG.8  

3.4.  Teorema de Bernoulli corregido.

3.4.1   Suministros mediante presión en la red (fig.9).

 Z0 =  altura de la red sobre el plano de referencia (=0)

  p0 =  presión de la red

  Z1 =  altura del grifo que se considere sobre el plano de referencia

  p1 =  presión pedida para el grifo.

        FIG.9                                                                                       

                        

De [1],  0 + p0 =  Z1 + p1 +   ( R +  R), o sea

p1 = p0 - Z1 -   (R +   R)                                                                      

3.4.2   Suministros mediante depósito elevado (fig.10).

Z0  =  altura de agua del depósito (en situación de agotamiento) sobre el plano de referencia.

p0 =  presión a la salida del depósito (= 0)

Z1 =  altura del grifo que se considere sobre el plano de referencia

p1 =  presión pedida para el grifo.

 FIG.10  

De [1],  Z0 + 0 = 0 + p1 +  (R +  R), ó sea

  p1 = Z0 -   (R +  R)

Como p0 en el caso A) y Z0 en el caso B) son datos de partida, los cálculos hidráulicos se concretan en cuidar que  (R +   R) no sobrepase un cierto límite para que p1 sea la adecuada.

4       CÁLCULO DE PÉRDIDAS DE CARGA.

4.1.  Fórmula Básica j=f(v2/2g).

Sea la figura que a continuación se representa, en la que “A” designa el punto dónde, por rozamiento, se anula la altura piezométrica de una vena de agua de sección circular.  En dicha figura situamos el “plano de referencia” pasando por un punto cualquiera, “B”, situado en cota inferior a la del punto “A”.

Por el principio de continuidad de la vena líquida sabemos que el agua se traslada de A a B a sección llena y a velocidad constante.  Imaginemos entonces una cierta rodaja diferencial, de masa “m”, que se traslada entre dichos puntos; por el principio de conservación de la energía podemos escribir

mgH + ½ mv2 = 0 + ½  mv2 + R,  ó sea  mgH = R    [1]

dónde R representa la pérdida de energía producida por el rozamiento de la rodaja diferencial, rozamiento que será directamente proporcional a la longitud recorrida L, a la altura H (= v2/2g), e inversamente proporcional al diámetro D del tubo.

Por otra parte en el caso del agua, mg (= p) = p D2/4 x Dl, por lo que [1] puede escribirse de la siguiente manera:

                             p D2/4 Dl H = g v2/2g 

Llamando  l a 4g/Dl, y siendo J = H/L  podemos escribir

                                                 v2

                                   J =   l----------   [2]

                                                 2gD   

  dónde,            J =  perdida de carga o altura por m.l. de tubería en m.c.a.

                        v = velocidad circulante del agua en m/seg.

                        g = aceleración de la gravedad en m/seg2

                        D = diámetro del tubo en m

Y en la que l (adimensional) es llamado coeficiente de rozamiento del material del tubo

Expresión general de la pérdida de carga por unidad de longitud de los conductos circulares trabajando a sección llena.

Cuando los conductos no son circulares o no trabajan a sección llena los planteamientos descritos son trasladables, sustituyendo el diámetro D por el “radio hidraúlico” que, como sabemos, expresa la relación entre la sección ocupada y el perímetro mojado (y que, en el caso anterior sería R = D/4).  Vemos, pues, que [2] expresa, bien la carga que motiva el movimiento de los líquidos en los canales cuando está contenida en fórmulas del formato, o bien expresa la pérdida unitaria de carga en tubos a sección llena cuando viene en el formato inverso J = f (v2 D), como es el caso, o bien, J = f (v2 R), genéricamente, siendo R el radio hidráulico.

4.2.  Fórmula Clásica.- Davey y Flaumant.

Veamos algunas formulaciones experimentales de las expresiones genéricas anteriores.

La expresión [2] puede también formularse con otro coeficiente adimensional “b” llamado de frotamiento, de valor   b =  l / 8g, con lo que puede escribirse

                                            l= 8gb                                                                                        

                                J =  =     

                                J  =  4b v2/D         [3]

DARCY (1.857) da a “b” la expresión polinómica :

                                b = a  + ( b / D)              

siendo a   y   b constantes del material utilizado para la tubería.

Así pues [3] adopta la forma:

                                              1         [4]

siendo,              J         = pérdida de carga por m.l. de tubería en m.c.a.

                        v         = velocidad media circulante en m/seg

                        D        = diámetro de la tubería en metros

y  b = constantes del material de la tubería

VALORES DE a  Y  b PARA TUBERIAS DE FUNDICIÓN

 Tuberías nuevas

   a  =   2,535 x 10-4

   b  =   6,47  x 10-6

  Tuberías usadas

   a  =   5,07  x 10-4

   b  =   1,294 X 10-5

La fórmula anterior se ha mostrado muy exacta para tuberías de f > 50 mm, especialmente de fundición, y su utilización está respaldada por la normativa francesa en la distribución de agua a los municipios rurales. FLAMANT (1.891) formula "b" de la siguiente manera

                      b =a / (Dv)1/4

con lo que

                       J = 4  a (v2  /  D5/4 v1/4 )=  4 a  (v8/4 - 1/4 /  D5/4 )

llamando m al producto  4 a  tenemos

                              J = m   (v7/4 / D5/4 )              [5]

  siendo,

                        J  =   pérdida de carga por ml de tubería en m.c.a.

                        v  =  velocidad media circulante en m/seg

                        D  =  diámetro de la tubería en metros

                        m  =  constante del material de la tubería

    VALORES DE m PARA TUBERIAS NUEVAS

Fundición

                 740  x  10-6

   Acero

                 700  x  10-6

   Cobre

                 570  x  10-6

   PVC

                 560  x  10-6

   Material idealmente liso

                 509  x  10-6

La fórmula de Flamant da valores bastante exactos para tuberías de f <  50 mm.,  y es la adoptada por la Norma Francesa .41. 201-202 para la distribución en los edificios.

Muy utilizada tradicionalmente en canales abiertos y que  modernas experiencias han mostrado como de  resultados muy satisfactorios en su aplicación a las tuberías de PVC y PE, es la fórmula de MANNING.

                                        [6]

en las que “n” adopta los siguientes valores, según el material.

MATERIAL DEL CONDUCTO

 

LADRILLO

 

                    0,017 – 0,030

 

HORMIGÓN Y FUNDICION

 

                    0,013 – 0,017

 

AMIANTO CEMENTO

 

                    0,011 – 0,017

 

PVC Y PE

 

                    0,006 – 0,008

y en la que R representa siempre el Radio hidraúlico.

4.3.  Determinación de las nuevas formulaciones de j.

                      J =  l  ( v2 / 2gD )

4.3.1.Nuevos conceptos.- Régimen laminar y régimen turbulento.  

 A) Régimen laminar (fig. 11).

  FIG.11

Se dice que una vena de fluido dentro de un conducto adopta un régimen laminar cuando sus partículas, correspondiente a distintos puntos de una sección, adoptan movimientos lineales y constantes aunque decrecientes desde el eje hasta las paredes.

  B)        Régimen turbulento (fig.12)

 

 

  FIG.12

Se dice que la vena de fluido adopta un régimen turbulento cuando las partículas no se mantienen lineales produciéndose, por tanto, componentes de dirección radial.  También en este caso el conjunto de velocidades es decreciente desde el eje hasta las paredes.

Para la cuantificación del fenómeno se utiliza un número abstracto, llamado de Reynolds (Re), establecido experimentalmente:

                                  Re  =  VD / n         [7]

  siendo,             Re  =  adimensional

                        v    =  velocidad media circulante en m/seg

                        D   =  diámetro del tubo en m

                        n    =  coeficiente de viscosidad cinemática del fluido

                                 (variable con su temperatura) en m2/seg

Evidentemente, y para un mismo fluido y diámetro, el factor determinante del valor de Re es la velocidad de circulación

El régimen laminar corresponde a valores de    Re  £  2.000

El régimen turbulento  corresponde a valores de Re  >  40.000

El régimen de transición corresponde a valores : 2.000 < Re <  40.000

Rugosidad relativa.

Complementariamente, la consideración de Re obliga a tomar en cuenta los obstáculos que encuentra el fluido en su camino.

Llamaremos rugosidad absoluta (K) a la altura máxima de las asperezas del conductor, medida en mm.

Más usada es la denominada rugosidad relativa (k), que responde a la expresión, también en mm.

                                  k =  K / D        [8]

siendo,

  D  =  diámetro del conducto

 VALOR DE K PARA TUBERIAS COMERCIALES

            MATERIAL     

            K  (mm)

  Cobre y polietileno (PE)

          0      á    0,0015

  Policloruro de vinilo (PVC)

          0      á    0,010

  Hierro galvanizado

          0,15

  Fundición nueva

          0,5    á   1,0

  Fundición en servicio

          1,5    á   3,0

4.3.2.Fórmula polinómica de Colebrook.

Retomando la fórmula general de pérdida de carga en el movimiento de un líquido en una tubería,  

                            J =  l  ( v2 /2gD )

el coeficiente de rozamiento l  puede considerarse como función de dos componentes

a)  del número de Reynolds (Re)

b)  de la rugosidad relativa ( K / D)

COLEBROOK estableció (1939) el valor de  l   en la siguiente fórmula general

                                                 [9]

sobre la que hay que hacer las siguientes consideraciones:

A)        En régimen laminar puro es escasa la influencia del componente b) expresado más arriba, puesto que las asperezas son envueltas por un movimiento ordenado pudiéndose, por tanto, prescindir del primer sumando de [9].  POISEUILLE calculó  l   en función solo del número de Reynolds, dando la expresión

                                    

Los valores resultantes para J así hallados no difirieron sensiblemente de los obtenidos por las fórmulas clásicas que mantienen, a nuestros efectos, toda su vigencia.

B)        En el caso de régimen turbulento, puro, cuando se alcanza un valor de Re muy elevado, el segundo sumando de [9] tiende a cero, quedando la expresión:

                                          

C)        Sin embargo en régimen laminar de transición influyen simultáneamente a) y b), por lo que se habrá de estar a los valores de  l   definidos por [9].  Suele ser el caso de las tuberías de plástico (PE, PE-R, PB), dónde son de uso velocidades mayores que las normales en conductos metálicos.

La fórmula más conocida y utilizada en ábacos para plásticos, hallada en base a Colebrook, es la de NIKURADSE donde

                                 l = 0,0032 + 0,22 (1/ Re 0,327)

5       CÁLCULO DE LAS REDES. PROCESO Y EJEMPLOS.

5.1    Planteamiento inicial.

Los cálculos hidráulicos tendentes a garantizar el adecuado servicio a un edificio se concreta en los siguientes objetivos, según los casos:

Caso A) Suministro con una presión inicial dada, bien sea de la red municipal o de un depósito elevado del propio edificio. Objetivos:

Establecer los diámetros adecuados para garantizar en cada tramo de la red el caudal punta Qp estimado

Q=V (D2 /4)

Procurar que las pérdidas de cargas que se originen en dichos tramos no impidan la presencia de una presión remanente aceptable en todos los grifos de la instalación.

Recordemos que este último propósito con las siguientes expresiones:

               p1= Z0 -   (R +  R), para suministro desde depósito

             p1= p0 - Z1 -   (R +  R), para suministro desde la red

en las que p1, en nuestro caso, ha de ser la presión de servicio de los grifos (ps) de las que se deduce la necesidad de que  (R + R)  no sobrepase un cierto límite.

Caso B) Suministro mediante hidrocompresor.

Establecer, igualmente, los diámetros adecuados para garantizar

en cada tramo el caudal punta estimado, cuidando que las velocidades no sean excesivas.

b) Calcular las pérdidas de carga  (R +  R) que se originen a fin de dotar a la instalación de un hidrocompresor tal que su presión mínima, p0, sea, al menos

                  p0= Z1 + p1 + (R +  R)

5.2    Procedimientos. Método de las velocidades y método de las presiones.   

Teniendo en cuenta la nomenclatura adoptada, dónde

               (*)        D = diámetro de los conductos

                        Q = caudal necesario

            (*)        v = velocidad media de circulación

            (*)        J = perdida de carga por m.l. de conducto

   hemos llegado a formulaciones del tipo

                              J=f(v, D)

  que unida a la consabida

                                                                        

nos daría dos ecuaciones para despejar las 3 incógnitas marcadas con (*). lo que nos obligaría, en cualquier caso, a emprender cálculos de tanteo o aproximaciones.

En la práctica las tres variables se relacionan con el caudal punta necesario en cada tramo mediante tablas ó ábacos que se utilizarán con una u otra estrategia, según se trate del caso A) ó B) del apartado anterior: En el primer caso habrá que cuidar sobre todo que no se vayan acumulando excesivas pérdidas de carga (procedimiento o método de las presiones); en el segundo, además, que no se produzcan velocidades no recomendables (procedimiento ó método de las velocidades).

Partiendo de los ábacos de cálculo que se adjuntan a este tema, desarrollaremos algunos ejemplos de cálculo que obviarán farragosas explicaciones.

Se aportan asimismo tablas y gráficos para la obtención de las resistencias puntuales, bien convertidas en su equivalente de metros de tubería (L2) o bien como

valores propios ( R) , conforme exponíamos en el tema anterior.

Tanto al utilizar el método de las velocidades como el de las presiones, ha de tenerse en cuenta que la velocidad del agua en las tuberías ha de estar comprendida entre unos determinados límites.

Así no interesan velocidades inferiores a 0,5 m/seg., pues pueden producir sedimentos e incrustaciones perjudiciales. Por otra parte las velocidades excesivas conducen a:

 -    Ruidos, con las consiguientes molestias para los moradores.

 -    Grandes rozamientos que ocasionan el desgaste prematuro de las tuberías, sobre todo cuando existe arenillas en suspensión.

-    Desprendimiento de las capas protectoras en las tuberías de hierro galvanizado.

 -   Golpes de ariete (energía cinética convertida súbitamente en presión excedente al cerrar bruscamente un grifo), cuyas secuelas pueden ser tanto las averías mecánicas en válvulas y griferías como trepidaciones en el trazado con efectos en la sujeción de la tubería a la obra.

La fíg.13 establece las velocidades máximas aconsejables según el diámetro – de las tuberías de hierro y cobre, que cabe extender a las de cloruro de polivinilo (PVC).

  FIG.13

La introducción en el mercado de tuberías de plástico flexibles y de paredes gruesas, tales como las de polietileno (P.E) y polibutíleno (PB) con nuevos sistemas de fijación, mitigan algunos de los problemas señalados, tales que los ruidos y la posibilidad de golpes de ariete. Si bien es un tema todavía poco contrastado pueden tomarse - con las debidas cautelas - los límites de velocidades que para sus productos reseñan las casas comerciales.

5.3    Valores de referencia para las velocidades y las presiones del agua.

Establecidos como datos de partida los Qp requeridos en cada tramo de la red, normalmente los cálculos hidráulicos se encaminan a lograr que la presión en todos y cada uno de los puntos de agua sea, al menos, la que señalan las tablas al uso (ver tabla en el tema I). A este fin se toma como referencia el "punto de agua más desfavorable"; si éste tiene la presión adecuada los demás la tendrán, entonces, sobrada. (En la mayoría de los casos tal punto viene a coincidir con el de la ducha del cuarto de baño más alto del edificio).

Como simplificación es bastante frecuente considerar todo un cuarto de baño e, incluso, una vivienda como "punto de agua más desfavorable" para luego mediante un cálculo complementario, cuando no simplemente "a ojo", establecer los diámetros de los ramales interiores que conducen a cada aparato. A tal efecto - y en caso de longitudes normales en los trazados interiores - cabe adoptar los siguientes requerimientos globales de presión:

-                     Obligatorio.  Según el C.T.E, (Documento Básico HS Salubridad).

·                     En los puntos de consumo la presión mínima debe ser:

a)        100 kPa para grifos comunes.

             b)        150 kPa para fluxores y calentadores.

-                     Recomendable:

 

CUARTO DE BAÑO

TIPO

P (Kg/Cm2

con fluxor

1,5

sin fluxor

0,75

 

 

VIVIENDA

TIPO

P (Kg/Cm2

Grande

1,2

mediana - pequeña

1,0

NOTA._ En estos cuadros se supone que la columna abastece al baño o vivienda por su parte alta, es decir junto al forjado. Cuando la derivación se hace a nivel de piso habrá que aumentar tales presiones en 2,50 m.c.a., o sea en 0,25 kg/cm2.

5.4     Ejemplos.

EJEMPLO 1._ EDIFICIO DE VIVIENDAS

MÉTODO DE LAS PRESIONES

PRESIÓN POR DEPOSITO ELEVADO

TUBERÍA DE COBRE

A) TRAZADO Y DATOS.

 ESQUEMA NO AJUSTADO A NORMAS. Obligatorio contadores divisionarios.

Columna y derivación en edificio de viviendas sin fluxores.

Altura del depósito sobre la la derivación : 7 ms

Pérdida de carga por contador individual:   0,50 m.c.a.

B) HIPÓTESIS DE TRABAJO.

Calcular secciones para que se cumplan en todos los casos los siguientes requerimientos de caudal y presión en los diferentes puntos de agua.

                                           Q(l/seg)          P(kg/cm2)

Lavabo, bidet e inodoro ..          0,1                  0,35

Fregadero ................               0,2                  0,35

Bañera   ..................               0,3                  0,35

Ducha ........................            0,2                   0,5

 

C) CAUDALES PUNTAS.

 Aplicación de la fórmula:            

                 

                                           

 

 

 

TRAMO

 

N

 

Q (l/seg)

                

 

Qp (l/seg)

KL

1

0,3

1

0,3

JK

2

0,4

1

0,4

IJ

3

0,5

0,71

0,36

0,4

HI

4

0,6

0,57

0,34

0,4

GH

7

1

0,41

0,41

MG

1

0,2

1

0,2

BG

8

1,2

0,38

0,46

EF

8

1,2

0,38

0,46

DE

16

2,4

0,26

0,62

CD

24

3,6

0,21

0,76

BC

32

4,8

0,20

0,96

AB

40

6

0,20

1,20

D) METODOLOGÍA DE CALCULO.

Se evidencia que el punto de agua más desfavorable es el L con unos requerimientos Qp =0,31/seg (bañera) y ps = 0,5 kg/cm2 (ducha). Al final de cada tramo se verificará que Z0 - J x L = p1. En nuestro caso en el punto L ha de ser p1 ps = 0,5 kg/cm2 (= 5 m.c.a.). Calcularemos primero el tramo crítico A-L para, luego, completar el cálculo de la columna. Los diámetros de las derivaciones y ramales de las plantas 4ª a 1ª se pueden establecer a buen ojo.

Se cuidará que en cualquier caso v 0,5m/seg.

E) CUADROS OPERATIVOS (MONOGRAMA FLAMANT_COBRE).

TRAMO A-L

TRAMO

Qp

(l/seg)

ll

(m)

V

 

(mm)

J

(m.c.a./ml)

l2

(m)

L

(l1+l2)

J x L

(m.c.a.)

z0-JxL=p1

(m.c.a)

Max.

Real

AB

1,20

7

 

0,6

50

0,009

   0,40

      2,15

      3,05

12,60

0,11

7 - 0,11 = 6,89

BG

0,46

2,50

 

0,65

30

0,020

       0,61

2    0,50

2     2,40

      1,80

7,81

0,16

6,89 -0,16 -0,50 (contador)-1,50 = 4,73

GH

0,41

1,5

 

0,82

25

0,036

   *   0,39

    *  0,40

2,29

0,08

4,73-0,08 = 4,65

HI

0,4

4

1,6

0,9

25

0,05

2    1,80

      7,60

    *  0,27

13,67

0,68

4,65-0,68 = 3,97

IJ

0,4

0,7

1,3

1,15

20

0,08

    *   0,30

    *  0,25

1,25

0,10

3,97-0,10 = 3,87

JK

0,4

0,7

1,3

1,15

20

0,08

    *  0,25

0,95

0,08

3,87-0,08 = 3,79

KL

0,3

2,10

1,3

0,95

20

0,06

2      1,50

3,60

0,22

3,79+1,50-0,22= 5,07 (>5 cumple)

  TRAMO G-M

TRAMO

Qp

(l/seg)

ll

(m)

V

 

(mm)

J

(m.c.a/ml.)

l2

(m)

L

(l1+l2)

J x L

(m.c.a)

Z0-JxL=p1

(m.c.a)

Max.

Real

GM

0,2

10,2

1,15

1,1

15

0,12

4     2,40

   *    4,60

17,20

2,06

4,73+1,5-2,06 = 4,17 (>3,5 cumple)

  *          COLUMNA Y PRESIONES DISPONIBLES A NIVEL DE RESTANTES     DERIVACIONES A PISOS:

TRAMO

Qp

(l/seg)

ll

(m)

V

 

(mm)

J

(m.c.a.)

l2

(m)

L

(l1+l2)

J x L

(m.c.a)

Z0-JxL=p1

(m.c.a)

Max.

Real

BC

0,96

3

1,9

1,7

30

0,006

   *    0,61 *  0,40

4,01

0,24

6,89+3-0,24=9,65

CD

0,76

3

1,9

1,1

30

0,050

*  0,40

3,40

0,17

9,65+3-0,17=12,48

DE

0,62

3

1,6

1,2

25

0,07

   *   0,39

  *  0,27

3,66

0,26

12,48+3-0,26= 15,22

EF

0,46

3

1,6

0,9

25

0,05

  *  0,90

3,90

0,19

15,22+3-0,19= 18,03

DERIVACIONES EN PLANTAS 4º A 1º (ESTIMACIÓN).

Planta 4ª

CG - 30

GH - 25

HL - 20

GM - 15

Planta 3ª

DG - 25

GH - 20

HL - 20

GM - 10

Planta 2ª

EG - 25

GH - 20

HL - 20

GM - 10

Planta 1ª

FG - 20

GH - 20

HL - 20

GM - 10

En todas las plantas los ramales a aparatos, según tablas (v. Tema I, tabla 5).

EJEMPLO 2._ HOTEL.

MÉTODO DE LAS PRESIONES

PRESIÓN EN LA RED

TUBERÍA DE HIERRO

 A) TRAZADO Y DATOS.  

Columna en hotel que ha de suministrar a 5 baños en vertical con fluxores.

Presión de la red en el punto A, p0 = 3,5 kg/cm2

B) HIPÓTESIS DE TRABAJO.

Calcular secciones para que en F (entrada al baño más desfavorable) haya una presión de servicio ps = 1,5 kg/cm2

 

 

 

 

C) CAUDALES PUNTAS.

 

TRAMO

 

 

APARATOS (interiores)

(l/seg)

QT  (l/seg)

 

nº grifos

n

QC1

(l/seg)

QP1

(l/seg)

 

1 – 2

 

Ducha (0.3)

 

0,3

 

1

 

1

 

0,3  ®

 

0,3

2 – 3

Ducha + lavabo (0.1)

0,4

2

1

0,4 ®

0,4

3 – F

Ducha + lavabo+bidé (0.1)

0,5

3

0,71

0,355 ®

0,4

4 – F

Fluxor

2,0

1

1

2,0 ®

2,00

Baño completo

 

TOTAL

2,5

4

0,58

1,45 ®

2,00

                                                            

TRAMO

 

QT  (l/seg)

 

nº grifos

 

QC1

(l/seg)

QP1

(l/seg)

 

EF

 

2,5

 

4

 

0,58

 

1,45  ®

 

2,00

DE

5

8

0,38

1,90  ®

2,00

CD

7,5

12

0,30

2,25  ®

2,25

BC

10

16

0,26

2,60  ®

2,60

AB

12,5

20

0,23

2,87  ®

2,87

D) METODOLOGÍA DE CÁLCULO.

Al final de cada tramo se verifica que po-Z -JxL = p1

Al final del tramo EF habrá de ser p1 = ps 1,5 kg/cm2 (= 15 m.c.a.)

Se opera en el sentido del agua con diámetros de tanteo requiriéndose corregir los mismos cuando originan pérdidas (= J x L) inadecuadas por exceso o defecto.

Las velocidades solo requieren ser chequeadas.

E) CUADRO OPERATIVO (MONOGRAMA FLAMANT _ HIERRO)

TRAMO

Qp

(l/seg)

ll

(m)

V  (m/s)

Ø

( “ )

J

(m.c.a./ml)

l2

(m)

L

(l1+l2)

J x L

(m.c.a)

p0 – (Z0 + JxL)= p1

(m.c.a)

Max.

Real

AB

2,87

4,00

2,3

2,00

 

1 1/2

0,19

2  *  3,00

         0,45       

  *   0,30

       3,75      

7,75

1,47

35- (3+1,47) = 30,50

BC

2,60

3,00

2,3

1,90

1 1/2

0,16

   *  0,45

3,45

0,55

30,50 – (3+0,55)= 26,95

CD

2,25

3,00

2,3

1,65

1 1/2

0,13

     0,45

3,45

0,45

26,95 - (3+0,45)= 23,50

DE

2,00

3,00

1,90

1,90

1 1/4

0,20

   *  0,40

   *   0,39

3,79

0,76

23,50 - (3+ 0,76)= 19,74

EF

2,00

3,00

1,90

1,90

1 1/4

1,20 

  *  10,50

    0,39

          10,89

13, 89

2,78

19,74 - (3+ 2,78)= 13,96

  Como no se consigue obtener una presión en el punto F de 15,00 m.c.a., aumentamos los diámetros desde el punto D y dejamos el cuadro de la siguiente manera:

DE

2,00

3,00

2,3

1,55

1 1/2

0,055

    *   0,45

3,45

0,19

23,50 - (3+ 0,19)= 20,31

EF

2,00

3,00

2,3

1,55

1 1/2

0,055

   *   0,45

  *   13,50

16,95

0,93

20,31 - (3+ 0,93)= 16,38

16,38>15m.c.a.

EJEMPLO . 3 HOTEL.

MÉTODO DE LAS VELOCIDADES.

PRESIÓN A SUMINISTRAR POR HIDROCOMPRESOR.

TUBERÍA DE P.B.

 A)    TRAZADO Y DATOS.

Cálculo del distribuidor general, columnas y derivaciones a baños de clientes. Sin fluxores.

B)        HIPÓTESIS DE TRABAJO.

Requerimientos de caudal y presiones de puntos de agua: igual que en ejemplo nº 1, referente a un edificio de viviendas.

Asignación de secciones al trazado crítico siguiente: Distribuidor - columna más alejada del hidro- baño última (R + R) resultante.

Material: Polibutileno.

Establecer la presión de trabajo mínima del hidrocompresor. Suponiendo que no se dispone de diámetros superiores a 40 mm. de diámetro en Pb. Para diámetros superiores se utilizará acero galvanizado.

C)    CAUDALES PUNTAS.  

D)    METODOLOGÍA DE CÁLCULO.

E)    INCIDENCIAS.

F)    CUADROS OPERATIVOS (ÁBACO TERRAIN_P.B. Y MONOGRAMA FLAMANT_HIERRO).

 

EQUIVALENCIA EN MS. DE TUBO RECTO DE LAS PÉRDIDAS DE CARGA POR ACCESORIO.

   INT

CODO

90º

 

CODO

45º

 

T  GIRO

90

             

T  PASO

RECTO

 

VÁLVULA COMPUERTA

 

VÁLVULA ASIENTO

 

VALV.

ASTO.

ANGULO

REDUCCIÓN

 

mm

 

 

10

3/8

0,30

0,20

0,45

0,10

0,06

2,45

1,20

0,12

15

1/2

0,60

0,40

0,90

0,20

0,12

4,60

2,45

0,18

20

3/4

0,75

0,45

1,20

0,25

0,15

6,10

3,65

0,22

25

1

0,90

0,55

1,50

0,27

0,20

7,60

4,60

0,30

30

1 1/4

1,20

0,80

1,80

0,40

0,25

10,50

5,50

0,39

40

1 1/2

1,50

0,90

2,15

0,45

0,30

13,50

6,70

0,50

50

2

2,15

1,20

3,05

0,60

0,40

16,50

8,50

0,61

60

2 1/2

2,45

1,50

3,65

0,75

0,50

19,50

10,50

0,74

80

3

3,05

1,80

4,60

0,90

0,60

24,50

12,20

0,87

90

3 1/2

3,65

2,15

5,50

1,10

0,70

30

15

1,00

100

4

4,25

2,45

6,40

1,20

0,80

37,50

16,50

1,15

125

5

5,20

3,05

7,60

1,50

1

42,50

21

1,50

150

6

6,10

3,65

9,15

1,80

1,20

50

24,50

2,00

EQUIVALENCIA EN MS. DE TUBO RECTO DE LAS PÉRDIDAS DE CARGA EN MECANISMOS Y APARATOS.

  INT

VÁLVULA

RET.

MUELLE

VÁLVULA

RET.

CLAPETA

CALENTADOR

AGUA

*

ACUMULA-

DOR  Y

RADIADO-

RES

*

INTERCAMB.DE CALOR

*

 

ABLANDADOR

*

CONTADORES

**

 

mm

 

 

10

3/8

1,20

0,20

 

2,50

 

 

 

15

1/2

1,60

0,30

 

3,00

 

 

 

20

3/4

2

0,55

10

3,50

 

7

 

25

1

2,50

0,75

12

4,00

2,1

12

 

30

1 1/4

3

1,15

16

4,50

5

 

 

40

1 1/2

3,50

1,50

18

5,00

12,5

 

 

50

2

4,20

1,90

20

5,75

13,2

 

 

60

2 1/2

5

2,65

 

6,50

14,2

 

 

80

3

6

3,40

 

7,00

25

 

 

100

4

8

4,85

 

7,50

 

 

 

* Cifras orientativas. Pedir datos fabricante.

** Ver apartado correspondiente en el tema  Valvulería y mecanismos.

5.5    Tablas y ábacos.

 

 

 
 

 

 

 

ANEXO: CÁLCULOS A PARTIR DE OTROS  MÉTODOS PARA LA DETERMINACIÓN DE CAUDALES PUNTA:

EJEMPLO . 1 HOTEL:

MÉTODO DE LAS PRESIONES

PRESIÓN EN LA RED

TUBERÍA DE HIERRO

A) TRAZADO Y DATOS.

 Columna en hotel que ha de suministrar a 5 baños en vertical con fluxores.

Presión de la red en el punto A, p0 = 3,5 kg/cm2

 B) HIPÓTESIS DE TRABAJO.

  Calcular secciones para que en F (entrada al baño más desfavorable) haya una presión de servicio ps = 1,5 kg/cm2

 C) CAUDALES PUNTAS.

 Dada la existencia de fluxores se utilizan las tablas estadísticas 2 y 4 del anexo del tema I. Caudal de 1 baño: 2  l/seg.  

 

 

TRAMO

Nº DERIVACIONES

%

Qp   (l/seg.)

EF

1

100

        1 x 2 x 1 = 2

DE

2

80

       2 x 2 x 0,8 = 3,2

CD

3

65

       3 x 2 x 0,55 = 3,9

BC

4

55

         4 x 2 x 0,55 = 4,4

AB

5

50

         5 x 2 x 0,5 = 5

D) METODOLOGÍA DE CALCULO.

Al final de cada tramo se verifica que po-Z -JxL = p1

Al final del tramo EF habrá de ser p1 = ps   1,5 kg/cm2 (= 15 m.c.a.)

Se opera en el sentido del agua con diámetros de tanteo requiriéndose corregir los mismos cuando originan pérdidas (= J x L) inadecuadas por exceso o defecto.

Las velocidades solo requieren ser chequeadas.

E) CUADRO OPERATIVO (MONOGRAMA FLAMANT _ HIERRO)

TRAMO

Qp

(l/seg)

ll

(m)

V

 

( “ )

J

(m.c.a/ml.)

l2

(m)

L

(l1+l2)

J x L

(m.c.a)

p 0 - Z - JxL= p1

(m.c.a)

Max.

Real

AB

5

4

2,48

2,2

2

0,17

         0,40

2     4,30

         0,60

9,30

1,58

35-3-1,58=30,42

BC

4,4

3

2,48

1,9

2

0,14

      *   0,60

3,60

0,50

30,42-3-0,50= 26,92

CD

3,9

3

2,48

1,7

2

0,10

      *   0,60

3,60

0,36

26,92-3-0,36= 23,56

DE

3,2

3

2,48

2,1

1 1/2

0,19

         0,61

      *   0,45

4,02

0,76

23,56-3-0,76= 19,80

EF

2

3

2,48

1,4

1 1/2

0,09

       *   1,50

     13,50

18

1,62

19,80 – 3 - 1,62 =  15,18

(>15 Cumple)

EJEMPLO . 2 HOTEL.

MÉTODO DE LAS VELOCIDADES.

PRESIÓN A SUMINISTRAR POR HIDROCOMPRESOR.

TUBERÍA DE P.B.

 TRAZADO Y DATOS.

Cálculo del distribuidor general, columnas y derivaciones a baños de clientes. Sin fluxores.

B)        HIPÓTESIS DE TRABAJO.

Requerimientos de caudal y presiones de puntos de agua: igual que en ejemplo nº 1, referente a un edificio de viviendas.

Asignación de secciones al trazado crítico siguiente: Distribuidor - columna más

alejada del hidro- baño última (R + R) resultante.

Material: Polibutileno.

Establecer la presión de trabajo mínima del hidrocompresor. Suponiendo que no se dispone de diámetros superiores a 40 mm. de diámetro en Pb. Para diámetros superiores se utilizará acero galvanizado.

CAUDALES PUNTAS.

Hallamos los caudales puntas de cada tramo con el abaco final del tema I en la curva correspondiente a hoteles y hospitales.

TRAMO

N

Q  (l/seg)

kp  (%)

Qp  (l/seg)

KL

1

0,3

100

0,3

JK

2

0,4

100

0,4

IJ

3

0,5

75

0,37 > 0,4

HI

4

0,6

65

0,39 > 0,4

 

TRAMO

N

Q  (l/seg)

kp  (%)

Qp  (l/seg)

GH

8

1,2

48

0,58

FG

16

2,4

37

0,89

EF

24

3,6

33

1,19

DE

48

7,2

27

1,94

CD

72

10,8

24

2,59

BC

96

14,4

23

3,31

AB

192

28,8

22

6,34

D) METODOLOGÍA DE CÁLCULO.

El punto más desfavorable es el L, con unos requerimientos Qp= 0,3 1/seg (bañera) y pS = 0,5 kg/cm2 ( ducha )

Calculado (R +  R) para el punto L más desfavorable, habrá de ser:

p0 = Z1 + p1 + (R +  R), dónde :

p0 = presión mínima de trabajo del hídro

Z1 = altura geométrica del punto L crítico

p1 = pS = presión de servicio = 0,5 kg/cm2

Establecida la presión mínima del hidro el resto de columnas y derivaciones se calculan, conforme al ejemplo nº 1 del anexo, partiendo de las diferentes p0 existentes al pie de cada columna.

El parámetro guía para la asignación de diámetros es la velocidad del agua.

Aunque operativamente es indiferente se considera más efectivo realizar la asignación de diámetros de menor a mayor.

E) INCIDENCIAS.

Al manejar el ábaco para PB veremos como en el distribuidor general AB, aún con el mayor diámetro comercial que se dispone, se supera la velocidad máxima recomendable. Ello nos induce a utilizar en este tramo hierro galvanizado, realizándose la transición entre diámetros y materiales mediante las oportunas piezas de reducción y adaptación.

F) CUADROS OPERATIVOS (ABACO TERRAIN_P.B Y MONOGRAMA FLAMANT_HIERRO)

TRAMO

Qp

 

l/seg

l

 

(m)

V

(m/seg)

 

Ext

(mm)

J

m.c.a/ml

R

(Jxl)

m.ca

 

R =

*  x   v2

            2g

 

m.c.a.

 

R+ R

 

 

m.c.a.

Max

Real

          V2

v2

___

2g

KL

0,3

2,20

4

1,3

22

0,1

0,22

2 * =3

1,69

0,09

0,27

0,49

JK

0,4

1,80

4

1,7

22

0,17

0,31

*   1,5    

* 1,5

2,89

0,15

0,45

0,76

     3,0

IJ

0,4

0,40

4

1,7

22

0,17

0,07

*  0                0

2,89

---

0

0,07

HI

0,4

0,50

4

1,7

22

0,17

0,08

   =0,5

*     =1,5

 0

2,89

0,15

0,30

0,38

         2,0

GH

0,58

3,20

4

1,7

25

0,18

0,58

 1,5

 3,0

2,89

0,15

0,67

1,25

4,5

FG

0,89

3

4

2,8

25

0,3

0,90

    0

7,84

---

0

0,9

EF

1,19

14

4

3

28

0,3

4,20

*  1

*   0           0

9

0,46

0,46

4,46

DE

1,94

7

4

3,3

32

0,3

2,10

 0

10,89

---

0

2,1

CD

2,59

7

4

2,7

40

0,18

1,26

 0

7,29

---

0

1,26

BC

3,31

3,50

4

3,8

40

0,28

0,98

 0

14,44

---

0

0,98

                                                                                                                                                      Suma parcial

    12,65

 

TRAMO

Q p

 

l/seg

l

 

(m)

V

(m/seg)

Int

(“)

J

m.c.a/ml

l 2

(m)

L

(l l+ l2)

J x L = R + R

Max

Real

AB

6,34

8

2,5

1,6

2 1/2

0,07

  = 0,50

2*  = 4,90

=3,65

  =0,74

17,79

1,25

       9,79

(R + ) =  12,65+1,25 = 13,90

Z del punto L : 15-2= 13 m.

Presión de servicio pS del punto L=5 m.c.a

PRESIÓN MÍNIMA DEL HIDROCOMPRESOR: 13.90 +13+5 = 31.90 m.c.a


Actualizado 20/02/08

 ©  Contenido: Juan Carratalá Fuentes y Manuel Roca Suárez